3.2712 \(\int \frac {(1-2 x)^{3/2} (3+5 x)^{3/2}}{(2+3 x)^{3/2}} \, dx\)

Optimal. Leaf size=160 \[ \frac {494}{675} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {8}{15} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}-\frac {2 (1-2 x)^{3/2} (5 x+3)^{3/2}}{3 \sqrt {3 x+2}}+\frac {494}{135} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}-\frac {2209}{675} \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right ) \]

[Out]

-2209/2025*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+494/2025*EllipticF(1/7*21^(1/2)*(1-2
*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-2/3*(1-2*x)^(3/2)*(3+5*x)^(3/2)/(2+3*x)^(1/2)-8/15*(3+5*x)^(3/2)*(1-2*x)^(
1/2)*(2+3*x)^(1/2)+494/135*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(3+5*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {97, 154, 158, 113, 119} \[ -\frac {8}{15} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}-\frac {2 (1-2 x)^{3/2} (5 x+3)^{3/2}}{3 \sqrt {3 x+2}}+\frac {494}{135} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}+\frac {494}{675} \sqrt {\frac {11}{3}} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {2209}{675} \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(3/2)*(3 + 5*x)^(3/2))/(2 + 3*x)^(3/2),x]

[Out]

(494*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/135 - (2*(1 - 2*x)^(3/2)*(3 + 5*x)^(3/2))/(3*Sqrt[2 + 3*x]) -
(8*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*(3 + 5*x)^(3/2))/15 - (2209*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]
], 35/33])/675 + (494*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/675

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps

\begin {align*} \int \frac {(1-2 x)^{3/2} (3+5 x)^{3/2}}{(2+3 x)^{3/2}} \, dx &=-\frac {2 (1-2 x)^{3/2} (3+5 x)^{3/2}}{3 \sqrt {2+3 x}}+\frac {2}{3} \int \frac {\left (-\frac {3}{2}-30 x\right ) \sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}} \, dx\\ &=-\frac {2 (1-2 x)^{3/2} (3+5 x)^{3/2}}{3 \sqrt {2+3 x}}-\frac {8}{15} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}+\frac {4}{225} \int \frac {\left (\frac {1395}{4}-\frac {3705 x}{2}\right ) \sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx\\ &=\frac {494}{135} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {2 (1-2 x)^{3/2} (3+5 x)^{3/2}}{3 \sqrt {2+3 x}}-\frac {8}{15} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}-\frac {4 \int \frac {-\frac {5865}{2}-\frac {33135 x}{4}}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx}{2025}\\ &=\frac {494}{135} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {2 (1-2 x)^{3/2} (3+5 x)^{3/2}}{3 \sqrt {2+3 x}}-\frac {8}{15} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}+\frac {2209}{675} \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx-\frac {2717}{675} \int \frac {1}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx\\ &=\frac {494}{135} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {2 (1-2 x)^{3/2} (3+5 x)^{3/2}}{3 \sqrt {2+3 x}}-\frac {8}{15} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}-\frac {2209}{675} \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )+\frac {494}{675} \sqrt {\frac {11}{3}} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.26, size = 102, normalized size = 0.64 \[ \frac {-10360 \sqrt {2} \operatorname {EllipticF}\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right ),-\frac {33}{2}\right )-\frac {30 \sqrt {1-2 x} \sqrt {5 x+3} \left (90 x^2-102 x-143\right )}{\sqrt {3 x+2}}+2209 \sqrt {2} E\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )|-\frac {33}{2}\right )}{2025} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(3/2)*(3 + 5*x)^(3/2))/(2 + 3*x)^(3/2),x]

[Out]

((-30*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(-143 - 102*x + 90*x^2))/Sqrt[2 + 3*x] + 2209*Sqrt[2]*EllipticE[ArcSin[Sqrt[
2/11]*Sqrt[3 + 5*x]], -33/2] - 10360*Sqrt[2]*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/2025

________________________________________________________________________________________

fricas [F]  time = 0.84, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (10 \, x^{2} + x - 3\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1}}{9 \, x^{2} + 12 \, x + 4}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^(3/2)/(2+3*x)^(3/2),x, algorithm="fricas")

[Out]

integral(-(10*x^2 + x - 3)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(9*x^2 + 12*x + 4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (5 \, x + 3\right )}^{\frac {3}{2}} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}}{{\left (3 \, x + 2\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^(3/2)/(2+3*x)^(3/2),x, algorithm="giac")

[Out]

integrate((5*x + 3)^(3/2)*(-2*x + 1)^(3/2)/(3*x + 2)^(3/2), x)

________________________________________________________________________________________

maple [C]  time = 0.02, size = 145, normalized size = 0.91 \[ \frac {\sqrt {-2 x +1}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \left (-27000 x^{4}+27900 x^{3}+54060 x^{2}-4890 x -2209 \sqrt {2}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \sqrt {-2 x +1}\, \EllipticE \left (\frac {\sqrt {110 x +66}}{11}, \frac {i \sqrt {66}}{2}\right )+10360 \sqrt {2}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \sqrt {-2 x +1}\, \EllipticF \left (\frac {\sqrt {110 x +66}}{11}, \frac {i \sqrt {66}}{2}\right )-12870\right )}{60750 x^{3}+46575 x^{2}-14175 x -12150} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x+1)^(3/2)*(5*x+3)^(3/2)/(3*x+2)^(3/2),x)

[Out]

1/2025*(-2*x+1)^(1/2)*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(10360*2^(1/2)*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(-2*x+1)^(1/2)*El
lipticF(1/11*(110*x+66)^(1/2),1/2*I*66^(1/2))-2209*2^(1/2)*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(-2*x+1)^(1/2)*Elliptic
E(1/11*(110*x+66)^(1/2),1/2*I*66^(1/2))-27000*x^4+27900*x^3+54060*x^2-4890*x-12870)/(30*x^3+23*x^2-7*x-6)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (5 \, x + 3\right )}^{\frac {3}{2}} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}}{{\left (3 \, x + 2\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^(3/2)/(2+3*x)^(3/2),x, algorithm="maxima")

[Out]

integrate((5*x + 3)^(3/2)*(-2*x + 1)^(3/2)/(3*x + 2)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (1-2\,x\right )}^{3/2}\,{\left (5\,x+3\right )}^{3/2}}{{\left (3\,x+2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - 2*x)^(3/2)*(5*x + 3)^(3/2))/(3*x + 2)^(3/2),x)

[Out]

int(((1 - 2*x)^(3/2)*(5*x + 3)^(3/2))/(3*x + 2)^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)*(3+5*x)**(3/2)/(2+3*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________